	School of Planning and Archi Vijayawada	itecture:	
	(An institution of National Importance under the Ministry of Human Resource Development, Govt. of India)		
	Survey No.4/4, ITI Road, Vijayawada-520008,	4/4, ITI Road, Vijayawada-520008, Andhra Pradesh, India	
	Department of Architecture		
Course: MLAR	Subject Code; MLAR126 Name- Geoinformatics for Landscape Architecture	Class: 1 st Yr MLAR II Sem A.Y. 2024-25	
Instructors:	Subject Instructors- Dr. Prashanti Rao	Internal Assessment: 50	
		External Jury Exam: 50	
Contact Periods/Week: 03 periods. (50 min each)		Total Marks: 100	
Time Table:	Wednesday	Credits: 3	
Attendance: Min 75%	Min. Passing Marks: 50% each in Internal & External Assessment, 50% in Aggregate		

Objective: To understand the basics of geoinformatics, data acquisition, processes, and interpretation. Students shall learn GIS-based analysis which links to the very heart of landscape architecture naturally and intuitively. GIS in landscape architecture helps to put forward some characteristic principles of study and practice that can be made operational via GIS while cultivating spatial intelligence in landscape design by exploiting its powerful integrating, analytical, and graphical capacities.

		LECTURE PLAN	
S.NO	DATE	TOPIC OF CLASS LECTURE & DISCUSSION	REMARKS
1	Week-1 (8 th Jan)	Remote Sensing Scenario in Indian Context. Concept and Foundation of Remote Sensing, Definitions, Processes, and Characteristics of Remote Sensing Systems, Advantages and limitations, Concept of Electromagnetic Radiation (EMR), Sources of Energy –Active and Passive Remote sensing,	Lecture and Discussion
2	Week-2 (15 th Jan)	Remote Sensor Platforms and Satellite Orbits, Types and Characteristics of Sensor, Multispectral and Hyperspectral sensors, Radar, Lidar; Specification of some popular satellites – IRS, Landsat, and SPOT series; High-resolution satellites – IKONOS, Carto sat, Quick bird, Orb View, Geo Eye, Worldview, Other latest earth resource satellites,	Lecture and Discussion
3	Week-3 (22 nd Jan)	Application of Remote Sensing in Resource Management. Bio-Resources: Agriculture, forest resources, and wildlife habitat assessment. forest density and type, issues in forest management.	Lecture and Discussion
4	Week-4 (25 th Jan)	Water Resources: Remote sensing application in the evaluation of surface and sub-surface water resources, water mining and pollution, and water resource management issues. Geoinformatics Models in Resource Management: Forest Fire Modelling, Wild Life Habitat Assessment modeling, Soil Erosion modeling, Land Resources Development Prioritization modeling.	Lecture and Discussion

		Introduction to Air Photo Interpretation	
5		Photogrammetric for Man Making: Introduction	Lecture and Discussion
	Week-5	/Definition Geometric Elements of a	
		Vertical Photograph Elements of	
	(29 th Jan)	Photographic System Types of Aerial	
		Photographs: Vertical Photographs Oblique	
		Photographs, Satallita	
6		Study Tour From 1 st to 10 th of Feb 2025	
0		Introduction to Geographical Information Systems	
		Definition. Composition of Geographical	
7		Information System, Computer	Lecture and Discussion
	Week-6	Hardware Module, GIS Software Module, Data	
	$(12^{\text{m}} \text{Feb})$	Input, Data Storage, Data Output, Database	
		Structures, Conversion between Raster and Vector	
8		1. Georeferencing of Vector and Raster Data	Visiting Faculty Lectures
		2. Introduction to the Shape Files and Hands-on	and Hands-on Practice in
	Week-7	exercise to convert Raster and vector images	the GIS lad
	(15 th Feb)	3 Introduction to the Attribute Table its	
		application, and conversion of Excel into the	
		CSV	
	Weels 9		
9	(19 th Feb)	Presentation	Internal Assessment-1
	(1) 100)		
		Spatial Analysis: Types of Spatial Analysis,	Visiting Faculty Lectures
10		Measurement in GIS, Query – Query by Attributes,	and Hands-on Practice in
	Week-9 (22 nd Feb)	Spatial Queries through Symbology, Attribute-	the GIS lab
		Based Operation,	
		1. Preparation of Chloropleth Maps	
		2. Conversion into Format by assigning all the	

11	Week-10 (5 th March)	Practice Session	Discussion-GIS -lab
12	Week-11 (12 th March)	Mid-Sem – Jury and Written Exam	Internal Assessment-2
13	Week-12 (15 th March)	Preparation for Rural, Urban, and Regional Studies Base Map and Land Use Land Cover- Supervised and Unsupervised, 3-D GIS Digital Elevation Model & Digital Terrain Model, NDVI, NDBI, NDWI, Watershed delineation Map, Flood Risk Mapping, Drought Mapping,	Visiting Faculty Lectures and Hands-on Practice in the GIS lab
14	Week-13 (19 th March)	Practice	Discussion-GIS -lab
15	Week-14 (26 st March)	Practice	Discussion-GIS -lab
16	Week-15 (2 nd April)	GIS-based Temporal Analysis of Urban, rural, and regional landscapes, GIS-based spatial association analysis of the distribution and allocation of the cultural and natural landscape,	Lecture
		GIS-based Temporal Analysis of Urban, rural, and	Practical-GIS Lab

17	Week-16 (9 th April)	regional landscapes, GIS-based spatial association analysis of the distribution and allocation of the cultural and natural landscape	
18	Week-17 (12 th April)	GPS monitoring of pedestrian movement, Use of Open Street mapping, and Various Open Sources. Drones are used for aerial mapping and surveying.	Visiting Faculty Lectures and Hands-on Practice in the GIS lab
19	Week-18 (16 th April)	Practice	Practical-GIS Lab
20	Week-19 (23 rd April)	End Of The Classes Internal Assessment -3	Presentation of portfolio
S. No.	Stages of Evaluation		Weightage
1	First stage: Assessment –1		15
2	Second stage: Mid-semester Examination		20
3	Third stage: Assessment –3		15
	Total		50

Reference Books:

References:

1. Batty, D.M.a.M. (ed.) (2005) GIS, Spatial Analysis and Modelling, ESRI Press.

2. Brewer, C.A. (n.d) Designing Better Maps: A Guide for GIS Users, ESRI Press.

3. C, H.T. (n.d) Land Form Designs, P D A Publication.

4. C. Hanna, K. (1999) GIS for Landscape Architects, ESRI press.

5. G.S. Srivastava (2014) An Introduction to Geoinformatics, McGraw Hill Education.

6. Garcia, J. (2017) Introduction to Geographic Information System, Larsen and Keller Education.

7. H, P.P. (1995) Concrete Floors Finishes, Butterworth-Heinemann.

8. K.R, B. (1990) Integrating GIS into Urban Regional Planning, Alternative approaches for developing countries regional development Dialogue, Japan: UNCRD.

9. Michael, L. (1988) Tree Detailing, London: Butterworth Architecture.

10. Michael, L. (1993) Landscape Detailing Vol.1 Enclosure, 3rd edition, Architectural Press.

11. Mitchell, A. (2005) Geographic patterns and Relationships, ESRI Press.

12. Stevens, D. (2000) Ultimate Water Garden Book, 01st edition, Conran.

Course Instructors: sd/-(Dr. Prashanti Rao) Head of Department:

sd/-(Dr. D Srinivas)